On the time sharing system, two methods are available to
produce card decks of files. One method would be to exploit
UTILITY, the alternative is to issue the OFFLINE PUNCH command.
The second method is presented in Figure 11.3.2-57. This mode
is limited to disk-to-card transfers, while UTILITY can also
punch from magnetic tape.

13.@+41 >OFFLINE PUNCH SAMPLE DATA
130859 >

Figure 11.3.2-57. Punching a file to cards on a commercial
time sharing system.

In both of the above systems, the card punch is a virtual
portion of the user's machine as was the tape drive. However,
the Government computer used in this study leaves no doubt to
the fact that the central operating system is the only one
capable of punching cards or accessing magnetic tape. The
programmer must specifically direct any data he wishes punched
to the central system for the operation. Figure 11.3.2-58 shows
how the user would punch a deck of cards.

COMMAND- ATTACH, S, BSSSAMPLEDATA, I D=GAERTNER

PF CYCLE NO. = 901
COMMAND- EDI TOR
..E'sls

ewlL,A» S

0.381 1657 6509 24.143 86.271
Qe 341 25.607 50.576 72.991 82.768
P.686 93.204 2049 73.456 22.296
72675 35.383 58.224 30.897 61.368
0.381 1657 6509 240143 86.271
0. 341 25.607 50576 72991 B82.768
39686 93.204 24049 73456 22.296
72675 35383 58.224 30.897 61.368

«s BYE
OCOMMAN D- BATCH, S, PUNCH, GAER

FILE NAME-1 GAERA® ,»DISP-PUNCH ,ID-*x»
COMMAN D-

Figure 11.3.2-58. Punching a file to cards on a typical
Government computer.

I1-68

SPS Vv-3.2.2.c Management Control Listings
Clear
SPS V-3.2.2.d Programmer Directory and Unit Listings

Programmer directory and unit listings can be generated
on all three systems. However, the degree of automation varies
dramatically. ¢Each file on the system is identified by a name
with a length of six characters on the in-house system, eight
characters on the time sharing system and 40 characters on the
Government system. The first two also require an extension or
file type identifier. It specifies the use of the file. The
third system allows a unique identifier as a second required
parameter.

This small contractor has found it advantageous to develop
standard program identification techniques that associate the
program with the programmer and the contract. In-house and on
the commercial time sharing system the first character of a file-
name identifies a programmer. Due to the small number of pro-
grammers involved, a single-character identifier usually suf-
fices. The second and third characters assign a project code
to the file. The Tast three or five characters identify the
program. On the Government system, the unique ID associates
the file with a particular contract, with nine characters
allowed. The forty character file name identifies the pro-
grammer, program and type of file.

In-house, the utility program DIR generates a list of
all programs by a particular programmer. DIR was written
by this contractor specifically for his system. However,
the program is relatively simple and could either be de-
veloped by all small contractors or produced in a general
form and distributed as an element of a PSL by the Govern-
ment. DIR duplicates the 1ist function of PIP but allows
more global parameters than PIP does. Entering a programmer
project code identifier to DIR generates a list of names of
all programs written by a programmer. It is not possible to
automatically print listings of the files at this time, but
the idea has been considered. PIP must currently be used to
print the files. By including more than one file identifier
on a line, pseudo-automatic operation is achieved. Figure
[1.3.2-59 shows how DIR displays all data files generated by
the programmer with code B, on project code 55, are then
printed with one command to PIP.

11-69

R R

DIR
BS55¢ DAT

BSSMIN« DAT 1 19-NOV-76
B5SMAX « DAT 1 19-NOV-76
BSSAVG. DAT 1 19-NOV-76

DIR
tC

R PIP

*«TTs=B55MIN«DAT, BSSAVGe DAT, BS5MAX « DAT
100 -7.00 6300

3800 -33.00 118.00

73:00 -1.00 176.00

-

Figure 11.3.2-59. Programmer directory and file listings
generated on a small contractor's in-
house minicomputer.

Features of the sophisticated time sharing system already
allow global extensions within the LISTF command to selectively
Tist the file names created by a programmer on a specific pro-
ject. Figure 11.3.2-60 contains an example of LISTF. Notice
that an extension was used on the command that creates a file.
The file is executed to automatically print the files on the
terminal with the PRINTF command. An alternative would have
been the OFFLINE PRINT command to direct the files to the line
printer.

On the Government computer used there are no global options
to the AUDIT command that give the versatility of the previous
example. The most direct method to accomplish the task would
be to direct the AUDIT output to a local file which could then
be edited. The LIST command could then be issued to find the
identifying strings in the particular columns where they occur,
Then, to print the files each would have to be attached and
sent through batch mode to the line printer. Figure 11.3.2-61
shows how the above is accomplished.

I11-70

-~

Figure 11.3.2-60.

1329.34 >LISTF BS55%« DATA (E NOI TEM)

t

13¢29.57 >P LI'¢STF EXEC

&1 &2 BSSRANDU
&1 &2 BSSMAXIM
&1 &2 BSSMINIM
13.31.12 ;LISTF
13.31.38 PRINTF
29.014 57.732
13.32. 23 PRINTF
100- 000 100.000
13¢32¢ 54 PRINTF

1.000 1.000

13.33.21 >

DATA P
DATA P
DATA P
PRINTF

BS5SRANDU DATA P
31.001 7.887
BSSMAXIM DATA P
100.000 100.-000
BSSMINIM DATA P

. 1.000 1.000

system.

[1-71

Programmer directory and file listings
generated on a commercial

time sharing

COMMAND- AUDI T,LFN=LI ST, Al=P, I DsGAERTNER
AUDIT FINISHED
EXIT

COMMMAND- EDI TOR

QOE)LISTDS

--‘L.{BSSZ;A,(IS, 18)

138= GAERTNER BSSMAXIMUMDATA

MGX111 @050 2 ©7/08/76 10/06776 117227176
179= GAERTNER BSSMINIMUMDATA ['

MGX111 0050 2 07/08/76 108/66776 117227176
260= GAERTNER BSSAVERAGEDATA) '
MGX111 0050 2 07/08/76 18/06/76 117227176
<« BYE

COMMAND- ATTACH,X, BSSMINIMUMDATA, I D= GAERTNER

PF CYCLE NO.= 0201
COMMAN D~ BATCH,X», PRINT, GAER

FILE NAME~IGAER17 ,»DISP-PRINT ,ID-%*
COMMAND- ATTACH,X1, BSSAVERAGEDATA, 1 D=GAERTNER

PF CYCLE NO.= @01
COMMAN D~ BATCH,X1, PRINT, GAER

FILE NAME-1GAER21 , DISP-PRINT ,ID-#*
COMMAND- ATTACH,X2, BSSMAXIMUMDATA, I D=GAERTNER

PF CYCLE NO.= @61
COMMAND- BATCH,X2, PRINT, GAER

FILE NAME-IGAER22 , DISP-PRINT ,ID-%x
COMMAN D-

187227176

10/22/176

10715776

Figure 11.3.2-61. Programmer directory and file listing
generated on a typical Government com-

puter.

11-72

b s

1
1

1

SPS V-3.2.2.e Automatic Indentation of Source Code

The capability to automatically indent source code
generated from PSL source data files is not available on
any of the three systems most often used by the small con-
tractor. It is recommended that a program for automatic
indentation be developed and supplied by the Government
to small contractors. Careful design techniques must be
followed when trying to produce such a program, especially
when FORTRAN is addressed, which does not allow complete
indentation. The C of a comment card must be in column
one, the statement numbers must appear in columns one
through five, the continuation character must fall in
column six. Another problem occurs if a line, when in-
dented, needs to be extended into a continuation line.

The continuation line could be automatically inserted but 1
the program would also have to ensure that the number of
continuation lines did not exceed the 1imit allowed by
the compiler,

SPS V=3.2.2.f Data Scanning

Scanning for a specific string of data in every line
of every unit in a PSL and listing the names of the units
in which it appears can be accomplished on each of the sys-
tems discussed. The method is not a direct implementation
of the stated task, but the desired results can be achieved.
[t is recommended that an exact interpretation be developed as
an element of a set of programming support functions that
would be supplied by the Government to small contractors.
Each of the systems would store the PSL units as separate
files. Each file could then be edited and a LOCATE for the
specific string over the entire file be executed. The list
of output would show each file name followed by either a list
of the occurrences of the string in the file or an error mes-
sage indicating that the string was not found. An added ad-
vantage of this method is that the usage of the string will
be displayed. Each of the systems allows two procedures to
perform the task, one requiring more programmer intervention
than the other. The first method is for the user to enter
the edit and locate commands from the terminal and have the
commands execute as entered. This method is shown in Figure
[1.3.2-62 on the in-house system. The string COEFF is
searched for in three files.

I1-73

R E
*ERB55CMA. FORSRSM/GCOEFFSVS/ S99EMSS
g CODE =ALPHA * BETA *COEFF

SAVCOF =COEFF
COEFF =SAVCOF

7% SRH FAIL IN MACROx?

*B/K$$

* ERBSSCMB. FORSRSBS99EMS S

% SRCH FAIL IN MACRO*?

* B/KS
* ERBSSMAT. FORSRSBS99EMS $
C) MATCH COEFFICIENT TO ARRAY

1 FCCOEFF .EQ. ARRAY(I,J)) GOTO 100
C COEFFICIENT MATCHED TO ARRAY
?7%«SRH FAIL IN MACRO*? '
*t C

Figure 11.3.2-62. Scanning for a specific string of data

in every line of every unit in a PSL and
listing the names of the units in which
it appears using a typical in-house mini-
computer.

The second alternative is to set up a series of commands
to perform the search. This method is shown for the commercial
time sharing system. First, the sequence of commands is created
as a file, as exemplified in Figure I11.3.2-63.

Figure

#9.23.31 >P SCAN EXEC

EXEC STKDCMND
EDIT BSS5C0OM19 FORTRAN
EXEC STKDCMND
EDIT BSS5COMPB FORTRAN
EXEC STKDCMND
EDIT BSSMATCH FORTRAN

[1.3.2-63. Example of a stored sequence of commands
on a commercial time sharing system to scan
for a specific string of data in every line
of every unit of data in a PSL and list the
unit names in which it appears.

[1-74

F'—'—'———_—"—'—————j

The 1ine "EXEC STKDCMND" performs the commands in file
KDCMND EXEC. Ihis file contains the search commands which
are identica for each file. Figure 11.3.2-64 lists the
STKDCMND EXE file
PSe.31le 42 >P STKDCMND EXEC
&BEGSTACK
LOCATE 7COEFF/ % x
QUIT
SENDSTACK
B } ¢ L] i f € KDCMN EAEL
he al two files offer a high degree of flexibility
The SCAN X fil can t pdated as the library expands to
include all new tries into the library. The file STKDCMND
EXEC could ! hanged t tore any editor command or include
any syste : mands . >xecution of the search is
showr :
29 . > »SCAN
ENT BSSCOMPA FORTRAN
EDI T3
CODE =ALPHA *BETA *COEFF
SAVCOF=COEFF
COEFF =SAVCOF
EOF
99. 54 51 EDIT BSSCOMPB FORTRAN
EDIT:
EOF
29+ 5458 EDIT BSSMATCH FORTRAN
EDI Tt
C MATCH COEFFICIENT TO ARRAY
1F¢C COEFF <EQ.ARRAY(I,J)) GOTO 100
Cc COEFFICIENT MATCHED TO ARRAY
EOF
295603 >

Figure 11.3.2-65. Scanning for a specific string of data in
every line of every unit in a PSL and listing the names of the
units in which it appears using a stored sequence of commands
on a commercial time sharing system.

11-75

The interactive termina)l technique will be demonstrated
for the Government computer system. The sequence of commands
is to attach and scan one file after another. Notice that the
attach command can be executed from within the edit environment,
Figure 11.3.2-66.

COMMAND- ATTACH,X, BSSCOMPUTEAFORTRAN, I D=GAERTNER

PF CYCLE NO.= 0§01
COMMAND- EDI TOR

oo EsX» S

eelL, 7/COEFF/, A

190= CODE =ALPHA *BETA #COEFF
38 0= SAVCOF=COEFF
1520= COEFF =SAVCOF

t.ATTACH:XX:855COMPUTBFORTRANpID-GAERTNER
PF CYCLE NO.= @@1

eo E0XX,»S ;

{JL)(COEFF{:A
ffATTACH:XEJBSSMATCHFORTRAN:ID-GAERTNER

PF CYCLE NO.= 9p}
'{La(COEFF/pﬂ

350=C MATCH COEFFICIENT TO ARRAY
470= I1F¢ COEFF +EQ<ARRAY(1,J)) GOTO 106
610=C COEFFICIENT MATCHED TO ARRAY

e

Figure 11.3.2-66. Scanning for a specific string of data in
every line of every unit in a PSL and list-
ing the names of the units in which it ap-
pears, on a Government computer.

SPS V-3.3 Programming Language Support
SPS ¥=3.3.1 Basic
SPS V-3.3.1.a.1 Syntax Checking of Source Code
Syntax checking of source code is done by all compilers.

However, the degree to which the compilers check for syntax
errors varies. Each computer manufacturer has developed his

I11-76

own compiler or compilers for the popular higher-level
languages and additional compilers have been developed

for specific purposes by non-manufacturers. This small
contractor's experiences with various compilers has been
broad and therefore we offer a few insights as to their
differences: For example, the FORTRAN standard specifies
that a variable name is limited to six characters. Both
CDC and DEC allow the use of seven character variable
names. The WATFIV compiler has the capability to de-
termine if a variable is undefined before it is used

while the IBM FORTRAN IV Tevels G and H do not have this
capability. There are few compilers that strictly ad-
here to the ANS standard. Each compiler writer decides
that certain extensions would be desirable for either
convenience or to offer specific options that his com-
puter has available. [f any of the language standards

is updated, as has been done with COBOL, it is recommended
that a knowledgeable structured programming representative
be included in the effort. While syntax validation will
remain a task of the compiler or precompiler, the use of
extensions within various compilers has generally liberal-
ized the syntax requirements of many languages.

SPS V-3.3.1.a.2 Compilation of Source Code and Storing
the Object Module

Compilation of source code and the storage of the
object module is accomplished by many compilers. ATl
three of the systems used as examples here are capable
of doing this. An exception to this are the "compile
and go" compilers, which do not produce object modules
that can be saved. They were developed for a different
purpose, namely for instructional environments where a com-
piler that utilizes relatively small amounts of compile
time at the expense of execution time is required due to
the large number of compiles needed in the particular situa-
tion. Where it was found that the number of program runs
that were made after the code was debugged was very small
with respect to the number of compiles. A typical example
of such a compiler is WATFIV.

The in-house computer often used by the small contractor
has the capability to compile and save the object module. In
the example shown in Figure 11.3.2-67, the FORTRAN compiler is
invoked to compile the source code contained in file BESSAM,FOR.
Since the input and output file extensions are not specified
the compiler automatically assumes the input extension to be
FOR and the output extension to be 0BJ. The two files are
then listed via PIP,

11-77

R F
*B 555SAM= B5 55AM
x1C

R PIP

* BS55SAM .« * /L

21-SEP-76

B55SAM. F OR 1 16-SEP-76
B55SAM. OBJ 3 21-SEP-76
2 FILES, 4 BLOCKS

3127 FREE BLOCKS

3

Figure 11.3.2-67. Compiling of source code and storing
of the resulting object module by an
in-house computer.

The time sharing system also has the ability to compile
a source file and store the object module. To invoke the com-
piler the programmer types the language name followed by the
name of the file to be compiled, optionally including various
compile time directives. Options of interest to the programmer
using structured techniques are those which perform automatic
validity checking of subscripts during execution, invoke syntax
and allocation checking and allow conditional compilation of
statements. Figure [1.3.2-68 contains an example compile of
a FORTRAN program stored under the file name B55SAMPL. After
the compilation, the LISTF command is issued to show the object
module created which has the same file name but with the file
type of TEXT.

15.37.982 >FORTRAN B55SAMPL

1538.14 >LISTF BSS5SAMPL *
FILBNAME FILETYPE MODE ITEMS

B555AaMPL FORTRAN P 313
BSSSAMPL TEXT) 217
15¢29.43 >

Figure 11.3.2-68. Compiling a source file and automatically
storing the object module on a commercial
time sharing system.

I11-78

T T

The typical Government computer has the capability to
compile source code and store the resultunt object code.
The compiler is initiated by typing FIN and identifying the
input file to be compiled. The output is put on the local
file called LGO which the user must save with the CATALOG
command as seen in Figure I11.3.2-69.

COMMAND- ATTACH,X,BS55SAMPLEFORTRAN, I D=GAERTNER

PF CYCLE NO.= 001
COMMAND- FTN,I=X

@.124 CP SECONDS COMPILATION TIME
COMMAND- CATALOG,LGO,BSSSAMPLETEXT, I D=GAERTNER

INITIAL CATALOG

RP = @9@ DAYS

CT ID= GAERTNER PFN=BSS5SAMPLETEXT
CT CYy= 001 0000256 WORDS.:
C OMMAN D-

Figure 11.3.2-69. Compiling a source file and storing the
resultant object module on a typical
Government computer.

SPS V-3,3.1.b Load Module Generation

Load modules can be generated on practically all time
sharing systems. The actual methods vary as do the command
names to perform the operation. On the in-house computer a
linker is employed to combine one or more object modules
with the required system and language library routines into
a memory image module. The resultant module is automatically
saved on random~-access disk storage. The program is then ready
to run. The linker is initiated by the command R LINK. The
instruction to the linker identifies the output file, the in-
put file or files, any libraries that should be searched to
satisfy external references and any additional optional para-

meters. Figure [1.3.2-70 contains the instructions to create
a load module, and run the program after listing the file
created.

I1-79

«R LINK
*BS5SAM=BS5SAM / F
*1C

R PIP

*B55SAM. SAV/L

17-SEP=-176)

B55SAM. SAV 9 17-SEP-76
*1C

«R BS55AM
INPUT DATA

1010 3342 10.959 35.678 15.439
716531 90235 97.627 73649 63.250
16659 30.709 34.320 29.542 68.369
44.335 S5S0.686 5103 T4.447 P.753

Figure 11.3.2-70. Creating a load module that is saved on
disk and executing it on a typical in-house
computer.

A load module is generated on the commercial time sharing
system in the manner shown in Figure I11.3.2-71. The file or
files are loaded into core with the LOAD command. Varijous op-
tions are available to specify map printing, core disposition
before loading begins, what libraries to search for unsatisfied
externals, and the order in which to search the libraries. If
the programmer wishes to specify more file names than can be
typed on one line then the USE command may be issued with the
additional file names. Upon successful loading, the GENMOD
command is entered to create a core-image file on disk. To
execute the file stored on disk, the user types LOADMOD fol-
lowed by the file name to load. Then the START command is
issued.

The Government computer permits generation of a load
module in a different manner. If multipie object files are
to be included they must first combine into one file. This
file may then be loaded for the module generation. The command

11-80

1513.33 >LOAD B55SAMPL
15.14. 01 >GENMOD B55SAMPL

15¢ 14¢ 41 >LISTF BSSSAMPL MODULE
B55SAMPL MODULE P 2

1516.85 >LOADMOD BS5SAMPL
1516043 >START
INPUT DATA

Q.427 1685 6.262 22.412 78.113
66969 98.796 90.P53 51.151 96.434
18246 41.567 85.188 37.@822 554437
99429 97.641 90.982 67.123 83.901

Figure I11.3.2-71. Creating a load module that is saved on
disk and subsequently recalled for execu-
tion on a commercial time sharing system.

to generate the module is XEQ, Figure I[1.3.2-72. To save the
load module the programmér must have previously issued a REQUEST
command specifying that the file created is to reside on a per-
manent device as opposed to a temporary device which is the de-
fault. Various options are available with the XEQ command simi-
Jar to those of the commercial time sharing system.

SPS V-3.3.2 Full Requirements
SPS V-3.3.2.a Top Down Structured Programming Support
SPS M=3.3.2.a.1 FElagging Explicit Bramches

Flagging of all explicit branches in source code listing
is not a capability provided on any of the systems so far dis-
cussed as being available to the small contractor. It is recom-
mended that a program be developed to scan a source file for all
explicit branches. The program would be included as an element
of a functional PSL package provided by the Goverament to small
contractors. It should have the capability to identify the
explicit branches and list them by source 1ine number and also
display them.

[1=81

COMMAND- REQUEST, SAMPLE, *PF
COMMAND- ATTACH,X, BSSSAMPLETEXT, I D=GAERTNER

PF CYCLE NO.= @01
COMMAND~ XEQ

OPTI N=L OAD=X
OPTIN=NOGO
C QMMAN D~ CATAL OG, SAMPL E, SAMPLE, I D=GAERTNER

INITIAL CATALOG

RP = 290 DAYS

'CT 1D= GAERTNER PFN=SAMPLE
CT CYy= 001 00000128 WORDS.t
COMMAN D~ REWIND, SAMPLE

C OMMAN D~ XFQJ SAMPLE
INPUT DATA
@e 427 1685 6.262 22.412 178,113
666969 9B¢796 9P.0@53 Sle151 96.434
18246 41.567 85.188 37.022 55.437
99.429 97.641 90.982 67.123 83.901

C OMMAN D-

[1.3.2-72. Creating a load module which is saved on
disk and later executed on a typical
Government computer.

[1-82

SPS V-3.3.2.a.2 Flagging Source Code Units That Exceed a
Maximum Size

Flagging of program language source code units that
exceed a maximum size to be defined by the user is not pro-
vided as a function on any of the systems the small con-
tractor presently has at his disposal. The small contractor
is able to determine the amount of storage required by each
unit as previously shown by PIP, LISTF or AUDIT. Each is
able to create a file of the library names and storage
actually utilized. This file would be compared with a
programmer-generated table that contains a file maximum
length field to produce the desired flagging. An alterna-
tive method would be to access each file and compare its
line count to the Tine count in the limit file. An addi-
tional feature might be to generate a list of files that
are not yet defined on the storage device but are defined
in the limit table and a list of files that are present in
the library but not included in the table. Various per-
centages could be determined to show the estimated versus
the actual amount of code. :

SPS V-3.3.2.a.3 Flagging Source Lines That Contain Multiple
Statements

Flagging any lines of program source code that contain
more than one structured source statement is not available
to the small contractor at present. This full reguirement
could be included in a functional PSL supplied to the small
contractor by the Government. The recommendation is to do
so. When developing this program care must be exercised in
determining that statements allowed by the language are
structured properly. For example, FORTRAN allows the pro-
grammer to place the GOTO portion of an IF statement on the
same source code line as the IF. In Structured FORTRAN the
GOTO must be placed on a continuation line.

SPS V-3.4 Library System Maintenance
SPS V-3.4.1 Basic Requirements
SPS V-3.4.1.a Library Installation Support

It is clear that each installation should have a well
defined procedure to install and support the PSL. Rather
than have each small contractor initiate his own procedure
the recommendation is made to provide detailed guidelines
to the small contractor for set up and installation of the
PSL. The guidelines should contain specific examples which
provide a clear understanding of exactly what is required.

=83

The installation of the functional PSL elements by the small
contractor on his in-house computer should be relatively
simple. The source files would be supplied by the Govern-
ment and the small contractor would merely have to compile
the source on his computer after minor modifications to
specifically stated parameters such as the default terminal
DSRN. Support could be offered indirectly by the Government
by retaining the producer of the source code on a consulting
basis to provide direct aid to the small contractor who de-
sires to install the functional PSL on his in-house system.
Multiple versions could be retained by the Government as
they are developed for each computer manufacturer's operat-
ing systems to be distributed to the small contractors for
their various in-house systems. As the number of versions
grow to cover all existing operating systems the consultant
source-code writer would be gradually phased out.

Commercial time sharing houses are now offering sophisti-
cated services to their subscribers. They are quick to respond
to user needs and it can be expected that they will support
PSL functional capabilities soon after the requirement is
finalized. As can be seen from the examples presented in
this section, many of the PSL functions are already avaijl-
able.

Any Government computer system that the small contractor
accesses would be expected to already have the PSL capability
installed since it would be a Government standard. ’

SPS V-3.4.1.b Library Maintenance Support

The small contractor is fully familiar with random access
storage of on-line files with back-up on magnetic tape. It has
been the procedure of this contractor to allocate complete
volumes on the in-house computer to specific projects. The
dynamic allocation of the volume is then left to the operating
system which automatically reallocates the storage as the
Tibrary is updated. When a project is completed, a final
version is stored on master tapes to relieve the volume for
a new project.

When accessing commercial time sharing systems, the pro-
cedure is quite similar. An entire user identification is
assigned to a project. The operating system dynamically re-
allocates the storage when any files are removed or updated.
When a project is completed backup tapes are generated.

[1-84

The Government system offers dynamic allocation and
reallocation of storage. When it is found that files are
no longer needed they are removed, thus freeing storage.
Tapes are prepared at the completion of each project.

The final magnetic tapes are, of course, not the only
tapes created during the program development. At predefined
periods of time the developing system is copied to magnetic
tape. These backups, although not often recalled, are very
inexpensive insurance against the loss of many hours of work.
They provide a copy of the system in the event of catastrophic
failure of the random access device.

SPS ¥=3.4.1.¢c Library Termination Supgport

Library termination support is provided by the storing
of the PSL on magnetic tape and the removal of the PSL from
the on-line storage.

SPS V-3.4.2 Full Requirements
SPS V-3.4.2.a.1 Hardware Configuration Definition

The in-house hardware configuration is well defined at
the small contractor's site, while at commercial time sharing
installations the hardware definition may be more fluid since
only the portion utilized needs to be paid for. Similar pro-
cedures are used at Government installations. Installing a
PSL at any of the sites would be relatively easy.

SPS V-3.4.2.a.2 Limited PSL Generation

A system generation facility that allows a programmer
to generate a PSL that contains only the major functional
capabilities required at his installation would only be
applicable to the in-house system of the small contractor.
[t should be assumed that both the commercial time sharing
system and the Government system would have full capabilities
and the small contractor would utilize only the portions needed.
By properly modularizing the PSL the small contractor would be
able to install only what is required. It is recommended that
the PSL supplied by the Government therefore be fully modular-
ized to accommodate this facility.

3PS V-3.5 Data Security
SPS V=3.9.1 Basic

The ability to recover from inadvertent loss or destruction
of data through the use of magnetic tape backups has been demon-

I[1-85

Pr—

strated earlier on all three systems that the small contractor
is most likely to access. Each system also has the capability
to prevent inadvertent destruction of data as a result of an
updating operation. The in-house system editor has the edit
back feature that renames the input file by changing the file
extension to BAK. The output file automatically takes on the
name of the input file. Thus the original file remains un-
changed. The commercial time sharing system has various op-
tions to retain an original version of a file while making up-
dates. Each method requires that the name of the file being
updated is changed. The first method would be to invoke the
ALTER command to change the name of the file to be updated.
The most convenient naming procedure is to append a digit to
the file name indicating the version number. After the file
has been edited and updated, the exit from edit can be made
with the command FILE NEW FILE where NEW FILE is the new file
name. If the original file already has a version number ap-
pended to it, the procedure would not require the ALTER com-
mand. An alternative approach would be to use the COMBINE
command to rename the original file into a new file name.

This would be the backup file. Then editing would occur on
the original file and exit would be accomplished with the
standard FILE command. This method has the advantage that

the latest version of the file can always be found under the
same name while previous versions are still available to the
user.

i The Government computer system has an on-line backup

f capability. By referring to the figures where the editor
was first introduced to alter the contents of the PSL files
the reader will note that the files that were catalogued
under the same name as the original file each showed an in-
cremented cycle count. This system allows five active cycles
of a file which means the most recent version will be stored
under the highest cycle number and up to four previous ver-
sions may be accessable to the programmer. Actually, five
active cycles are too many because the storage costs become
prohibitive for the amount of on-line storage required. The
older versions are usually retained on magnetic tape.

None of the systems prevent the user from adding files
of the same name to the system. The systems assume that if
the user duplicates a name already in existence that he in-
tends to replace the old file with the new.

SPS V-3.5.2 Full Requirements
SES V=35, 2.a Data lntegrity

Data integrity between versions can be maintained on all
three example systems available to the small contractor. In-

T —

house integrity is provided by appropriately naming his

files by version number. LINKing various program segments

is performed by specifically naming the files to be included.
By selecting the appropriate version to include he creates
either the operational, development or maintenance version.
For example, assume that a development version is being
created of a system that is to include a new version of
program B while utilizing the operational versions of pro-
gram A and C. The files would be specified by their version
numbers, assuming version 3 is the operational version and
version 4 is the development version. Figure 11.3.2-73 shows
how this would be accomplished.

«R LINK
* BSSVR4=BS55AV 3, BSSBV4, B55CV3/F
*

Figure 11.3.2-73. Data integrity between versions of a
system on an in-house computer.

The commercial time sharing system can preserve the
integrity between versions by assigning each version to a

separate userid. The userid that contains the production
versijon can be attached in read-only manner from the other
userids. The development ID can then search the production

[0 for any needed files. An example is shown in Figure
[1.3.2-74. The development ID possesses a new version of
program B and does not contain a version of programs A or C.

A new development version load module is to be created utiliz-
ing the three programs. From the development [D the produc-
tion ID is attached as a T disk. The load command is given.
[t automatically searches the development ID disk for the text
files for programs A, B and C. Finding only B it proceeds to
the T disk and finds programs A and C. Any system routines
needed are then searched for on the system disk.

»

1S« 3«42 >ATTACH PRODUCT 191 AS 192 RO
PRODUCT ATTACHED AS 192, (RO)

15439453 >LOAD A B C

15+ 40. 33 >GENMOD

15.42.15 >
Figure I11.3.2-74. ¢Example of preserving data integrity between
development and production versions of a program on a commercial

time sharing system.

11-87

When using the Government computer the user can assign
distinct names to each version. When creating the load module
for a new development version he need only attach the appropriate
file for inclusion in the copy command before executing XEQ, Fig-
ure I[1.3.2-75.

COMMAND- ATTACH, A, APRODUCTION, 1 D=GAERTNER

PF CYCLE NO.= @01
COMMAND- ATTACH, B, BDEVELOP, I DsGAERTN R

PF CYCLE NO.= @03
COMMAN D~ ATTACH, C» CPRODUCTION, I D=GAER"NER

PF CYCLE NO.= @g@1
COMMAND- COPYBR, A, S»99

END OF FILE ENCOUNTERED AFTER COPY OF
: RECORD 3
COMMAN D- COPYBR, B» S»99

END OF FILE ENCOUNTERED AFTER COPY OF
RECORD 2
COMMAND- COPYBR, C, S,99

END OF FILE ENCOUNTERED AFTER COPY OF
RECORD 10
CMMAND- XEQ,LOAD=S,NOGO

Figure 11.3.2-75. Example of preserving data integrity
between program versions on a typical
Government computer.

SPS V=3.5.2.5 [Data Protection
SPS V-3.5.2.b.1 Restricted Access

Data protection in the form of restricted access to the
data files of libraries within a project is available in vary-
ing degrees on all three systems most often used by the small
contractor. The in-house system is rather basic. It requires
that the volume containing the library be physically removed
from the system and appropriately stored in a secure place.
When using a commercial time sharing system, the restricted

11-88

access is visible from the time of system dial up. The user
must know a minimum of three items before he can access a
particular library. They are the computer on which they are
stored, the userid and the password associated with the userid.
The computer is usually known to anyone involved with the sys-
tem. The userid would be known to all programmers who-need

to access it. The password which is not distributed is, as
its name suggests, a key to the library. It consists of one
to eight characters. Any character that can be typed at a
terminal and recognized by the computer can be utilized in

the password. There are additional safeguards that can be
exploited, the first of which is a PROFILE exec. The PROFILE
exec is a program that is executed each time the userid is
logged in. The security aspect of the program is that it may
ask for additional passwords. If these passwords are not
entered properly, the userid can be logged off the system by
the program. The second safeguard is a program called PROTECT
exec. This program is executed each time the disk is attached
by another userid. It also has the capability to ask for
additional passwords. Furthermore, it can restrict the use

of any or all computer commands, facilities, programs and

data files. These restrictions can be based on the attach-
ing userid, or the password entered. The mode of attach can
be checked and certain users can be allowed to only update or
read the disk. The PROTECT exec can also restrict access by
the accounting information of the attaching userid. With the
capabilities of PROFILE and PROTECT it can be seen that security
of the library can be easily set up and maintained.

When using the Government computer system the programmer
must again enter a userid and a password. Once on the system
the names and associated userids of all files in the system
can be ascertained by use of the AUDIT command. This does
not give the user access to the files though. Each file may
be assigned up to five distinct passwords which give varying
i degrees of access privilege. Data security can be maintained
for individual libraries in this fashion.

SPS V=3.5.2.0.2 Qutput Access, Restricted Update

Free access to data units for output but restricted up-
date privileges can be achieved on either the commercial time

sharing system or the Government computer. In this mode of
operation, the libraries or files, depending on the system,
are given passwords for "updatable", "writable" and "read only".

The read-only password is given to specified individuals who
only output the files from random access disk to other media
such as printer or magnetic tape.

I171-89

e —————

* SPS V-3.5.2.b.2.c Output and Update Access

Free access to data units for either output or update
but not extending can be accomplished on either the com-
mercial time sharing system or on the Government system.
Again, a password is set up for update privileges and dis-
tributed to the appropriate individuals. With update pri-
vileges the user can read the files and make changes to the
files by replacement of any data that exists in them. It
is not possible for the user to extend the file though.

SPS V-3.5.2.b.3 Classified Title Printing

Printing classified titles such as confidential or
secret is not presently available on any of the three
example systems most often used by the small contractor.
This capability is not desirable for commercial time shar-
ing systems because they do not offer the security required
by Government standards for these levels. The majority of
user interaction is carried on through a remote terminal that
accesses the computer via common telephone lines. When
Government computers are employed, the same telephone access
is available. However, on-site time can be allocated for
various levels of security classification. The first step
to achieve the minimum security level is to disable the re-
mote access capability. Then the computer is cleaned to re-
move any- latent programs before it is exercised in a dedicated
mode. The in-house system of the small contractor often does
not have remote access capability but strict security rules
must be followed to achieve classified status. It is as-
sumed the small contractor could request the Government com-
puting system for classified work and that the PSL capabili-
ties would be available to print the desired titles. The
in-house system would require the implementation of the PSL
capability for classified title printing. It is recommended
that the ability to print classified titles be implemented
as an element of the PSL distributed by the Government but
that it be supplied only on an as required basis and after
the particular contractor has met the other Computer Facility
clearance requirements.

SPS V-3.6 Management Data Collection and Reporting
3PS V=356.1 " Bdstc

There are no basic requirements.

11-90

P ——————————

‘ SPS V-3.6.2 Full Requirements
SPS V=3.6.2.a Collection

SPS V-3.6.2.a.1 Counting input source code

on either the Government or in-house system. The commercial
time sharing system does this automatically in its disk
directory. It is recommended that an element of PSL be de-
veloped to count the number of lines of source code input
for a unit, to be distributed by the Government to small

h Counting input source code is not directly available

contractors. In order to make the process automatic it
would most Tikely consist as a portion of a complete operat-
ing system. It is impractical for the Government to supply

full operating systems to small contractors so it is recom-
mended that the function be non automatic but invokable on an
as required basis.

SPS V-=3.6.2.a.2 Gathering and Stering Source Unit Date Data

Gathering and storing source unit start date, end date
and other similar data, which is available to the PSL in a
management-statistical data base, cannot be accomplished on
the present systems under discussion. In its present form
the in-house system only returns the start date for a source
code file. The commercial time sharing system has the start
date and the date of the last alteration which would be the
end date of the source unit. The Government computer has
available the starting and ending dates for source files.
However, there is no method to collect this information on
specific files and to store it in a meaningful manner in a
Table.

SPS V¥=3.6.2.a.3 Counting PSL Functions Used

Retaining a count of the number and type of functions
invoked from the PSL is not readily available automatically.
Items such as the number of compilations of source file could
be counted -manually but automatic retention requires more of
a system monitoring package. One suggested method is to
modify existing minicomputer operating systems to automatical-
ly record the terminal session on a disk file. The file could
then be processed by an accountiny program to develop statistics
about the session. When accessing a large-scale time sharing
system a terminal that has the capability to simultaneously
record and communicate such as the CMC/2741 would be utilized.
The recorded data could then be processed through an accounting
program.

['1=91

SPS V-3.6.2.a.4 Ability to Add Routines to the PSL

There is no lack of ability on the part of the small
contractor to add routines to a PSL to satisfy unique re-
quirements. The complexity of adding functions will be
highly dependent upon how the P5L is initially configured.
It is recommended that a small contractor be the prime con-
tractor for the final design and implementation so that the
needs of the majority of small contractors will be taken in-
to account.

SPS V-3.6.2.b Updating
SPS V-3.6.2.b.1 Storage Allocation

Allocating management statistical data storage areas
is done automatically on all three example systems when the
files are created.

SPS V-3.6.2.b.2 Management Statistical Data Editing

Editing of management statistical data could be accom-
plished by the editors on the systems so far discussed. The
programmer would not be notified of any format or data errors
by this method until an actual report was produced. It is
recommended that a Management Statistical Data Handling
(MSDH) routine be developed that would allow input of data
in English format and validation of the input information.

SPS V-3.6.2.b.3 Adding Management Statistical Data

Adding management statistical data supplied by the
user could also be a function of the Management Statistical
Data Handler recommended in the previous paragraph.

SPS V-3.6.2.b.4 Deleting Management Statistical Data

Deletion of user supplied information could be handled
by the ASDH.

SPS V-3.6.2.b.5 Replacing Management Statistical Data

Replacing data in the management statistics data base
should be a function of the MSDH.

SPS V-3.6.2.b.6 Storing Computer Turnaround Time Data
Storing data relating to computer turnaround time is

not as critical in the real-time environment which most
small contractors use. Perhaps system response time could

I[1-92

